في الآونة الأخيرة، ارتفعت أسعار النفط العالمية بشكل حاد وحظيت صناعة الطاقة المتجددة المتمثلة في توليد الطاقة الشمسية الكهروضوئية باهتمام واسع النطاق. باعتبارها العنصر الأساسي لتوليد الطاقة الكهروضوئية، فإن آفاق التنمية والقيم السوقية للخلايا الشمسية الكهروضوئية هي محور الاهتمام. وفي سوق البطاريات العالمية، تمثل الخلايا الكهروضوئية حوالي 27%[1]. يلعب المجهر الإلكتروني الماسح دورًا كبيرًا في تعزيز عملية الإنتاج والأبحاث المتعلقة بالخلايا الكهروضوئية.
الخلية الكهروضوئية عبارة عن طبقة رقيقة من أشباه الموصلات الإلكترونية الضوئية التي تحول الطاقة الشمسية مباشرة إلى طاقة كهربائية. الخلايا الكهروضوئية الحالية المنتجة بكميات كبيرة هي في الأساس خلايا سيليكون، والتي تنقسم إلى خلايا سيليكون أحادية البلورة، وخلايا سيليكون متعددة البلورات، وخلايا سيليكون غير متبلورة.
طرق التركيب السطحي لتعزيز كفاءة الخلايا الشمسية
في عملية الإنتاج الفعلية للخلايا الكهروضوئية، من أجل زيادة تحسين كفاءة تحويل الطاقة، عادة ما يتم عمل هيكل خاص على سطح الخلية، وتسمى هذه الخلايا بالخلايا "غير العاكسة". على وجه التحديد، يعمل الهيكل المحكم على سطح هذه الخلايا الشمسية على تحسين امتصاص الضوء عن طريق زيادة عدد انعكاسات الضوء المشعع على سطح رقاقة السيليكون، مما لا يقلل من انعكاس السطح فحسب، بل يخلق أيضًا مصائد ضوئية بالداخل. الخلية، وبالتالي زيادة كبيرة في كفاءة تحويل الخلايا الشمسية، وهو أمر مهم لتحسين الكفاءة وتقليل تكلفة خلايا السيليكون الكهروضوئية الموجودة[2].
مقارنة السطح المسطح وسطح هيكل الهرم
بالمقارنة مع السطح المستوي، فإن رقاقة السيليكون ذات البنية الهرمية لديها احتمالية أكبر لأن الضوء المنعكس من الضوء الساقط سيعمل مرة أخرى على سطح الرقاقة بدلاً من الانعكاس مباشرة مرة أخرى في الهواء، وبالتالي زيادة عدد الضوء المتناثر وينعكس على سطح الهيكل، مما يسمح بامتصاص المزيد من الفوتونات وتوفير المزيد من أزواج ثقب الإلكترون.
مسارات الضوء لزوايا سقوط الضوء المختلفة التي تضرب هيكل الهرم
تشمل الطرق الشائعة الاستخدام لتركيب السطح النقش الكيميائي، والحفر الأيوني التفاعلي، والطباعة الحجرية الضوئية، والحز الميكانيكي. من بينها، تُستخدم طريقة النقش الكيميائي على نطاق واسع في الصناعة بسبب تكلفتها المنخفضة وإنتاجيتها العالية وطريقة بسيطة [3] . بالنسبة للخلايا الكهروضوئية أحادية البلورية من السيليكون، عادةً ما يتم استخدام النقش متباين الخواص الناتج عن المحلول القلوي على طبقات بلورية مختلفة من السيليكون البلوري لتشكيل بنية مشابهة لتكوين "الهرم" وهو نتيجة تباين المحلول القلوي على طبقات بلورية مختلفة من السيليكون البلوري. يحدث تكوين هيكل الهرم نتيجة لتفاعل القلويات مع السيليكون متباين الخواص [4] . في تركيز معين من المحلول القلوي، يكون معدل تفاعل OH- مع سطح Si(100) أعلى عدة مرات أو حتى اثنتي عشرة مرة من سطح Si(111)، وهذا هو الفرق في معدل التفاعل مما يؤدي إلى تكوين هيكل الهرم.
تساعد المجاهر الإلكترونية الماسحة في تحسين جودة الخلايا الشمسية
في عملية النقش الكيميائي، سيؤثر تركيز محلول النقش ودرجة الحرارة ووقت التفاعل وعوامل أخرى على إعداد سطح الصوف لخلية بلورية السيليكون، مما يؤدي إلى انعكاسات مختلفة. باستخدام المجهر الإلكتروني الماسح بفتيل التنجستن CIQTEK SEM3100، يمكن ملاحظة حجم المنطقة المحفورة والبنية الهرمية السطحية بشكل فعال أثناء عملية التصنيع.
بفضل مزايا حجرة العينات ذات السعة الكبيرة للمجهر الإلكتروني CIQTEK SEM3100، يمكن للمستخدمين وضع عينات يصل قطرها إلى 370 مم دون قطع، ويمكن إمالة مرحلة العينة المؤتمتة بالكامل ذات المحاور الخمسة على المجهر الإلكتروني من -10 درجة إلى 75 درجة. °، مما يتيح مراقبة متعددة الزوايا لمواقع مختلفة للعينة.
طاولة العينة مائلة بزاوية 45 درجة
طاولة العينة مائلة بزاوية 30 درجة
عينة وضعت أفقيا
يتم استخدام جهد التسارع المنخفض الذي يبلغ 3 ~ 5 كيلو فولت لمراقبة الهيكل الهرمي السطحي للخلايا الكهروضوئية في المجهر الإلكتروني SEM3100، والذي يمكن أن يقلل من عمق اختراق شعاع الإلكترون على سطح العينة ويجعل تفاصيل السطح المرصودة أكثر ثراءً، ويميز السطح بشكل أفضل العيوب وشكل الهيكل، وبالتالي مساعدة المستخدمين على مقارنة وتحليل عمليات إنتاج المخمل المختلفة.
وفقًا لأبحاث GIR (Global Info Research)، ستبلغ إيرادات معدات الخلايا الشمسية (PV) العالمية حوالي 44.7 مليار دولار في عام 2021 ومن المتوقع أن تصل إلى حجم 55.57 مليار دولار في عام 2028. ومن بين أنواع المنتجات، سيستمر السيليكون أحادي البلورية في احتلال مكانة كبيرة. موقف مهم. باعتباره أداة قوية للتحليل المجهري، سيكون CIQTEK SEM3100 أداة قوية لتعزيز عملية إنتاج الخلايا الكهروضوئية والأبحاث ذات الصلة.
مراجع:
[1] وو جيجي وآخرون. أبحاث وتوقعات صناعة البطاريات [J]. الكيمياء الحديثة، 2017، 37(9):5.
[2] لي جيايوان. دراسة سطح صوف الخلايا الشمسية [D]. جامعة داليان للتكنولوجيا، 2009.
[3] لي إتش إل، تشاو إل، دياو إتش دبليو، وآخرون. تحليل العوامل المؤثرة على بنية الهرم في إنتاج تدفق السيليكون أحادي البلورة [J]. مجلة البلورات الاصطناعية، 2010، 39(4):5.
[4] نيشيموتو واي، نامبا ك. دراسة تركيب خلايا السيليكون الشمسية البلورية بمحلول كربونات الصوديوم [J]. مواد الطاقة الشمسية والخلايا الشمسية، 2000، 61(4):393-402.
مستقرة ومتعددة الاستخدامات ومرنة وفعالة يعد CIQTEK SEM4000X مجهرًا إلكترونيًا مستقرًا ومتعدد الاستخدامات ومرنًا وفعالًا لمسح الانبعاثات الميدانية (FE-SEM) . إنه يحقق دقة تبلغ 1.9nm@1.0kV، ويتعامل بسهولة مع تحديات التصوير عالي الدقة لأنواع مختلفة من العينات. يمكن ترقيته باستخدام وضع تباطؤ الشعاع الفائق لتعزيز دقة الجهد المنخفض بشكل أكبر. يستخدم المجهر تقنية كاشفات متعددة، مع كاشف إلكترون داخل العمود (UD) قادر على اكتشاف إشارات SE وBSE مع توفير أداء عالي الدقة. يشتمل كاشف الإلكترون المثبت على الحجرة (LD) على وامض كريستالي وأنابيب مضاعفة ضوئية، مما يوفر حساسية وكفاءة أعلى، مما يؤدي إلى الحصول على صور مجسمة بجودة ممتازة. واجهة المستخدم الرسومية سهلة الاستخدام، وتتميز بوظائف التشغيل الآلي مثل السطوع والتباين التلقائي، والتركيز التلقائي، والوصمة التلقائية، والمحاذاة التلقائية، مما يسمح بالتقاط صور فائقة الدقة بسرعة.
يتعلم أكثرCIQTEK SEM5000 هو مجهر إلكتروني لمسح الانبعاثات الميدانية يتمتع بقدرة تصوير وتحليل عالية الدقة، مدعوم بوظائف وفيرة، ويستفيد من تصميم عمود البصريات الإلكترونية المتقدم، مع تقنية نفق شعاع الإلكترون عالي الضغط (SuperTunnel)، وانحراف منخفض، وعدم الغمر عدسة موضوعية، تحقق تصويرًا عالي الدقة بجهد منخفض، ويمكن أيضًا تحليل العينة المغناطيسية. من خلال التنقل البصري، والوظائف الآلية، وواجهة المستخدم التفاعلية بين الإنسان والكمبيوتر المصممة بعناية، وعملية التشغيل والاستخدام المُحسّنة، بغض النظر عما إذا كنت خبيرًا أم لا، يمكنك البدء بسرعة وإكمال أعمال التصوير والتحليل عالية الدقة.
يتعلم أكثرCIQTEK SEM5000 هو مجهر إلكتروني لمسح الانبعاثات الميدانية يتمتع بقدرة تصوير وتحليل عالية الدقة، مدعوم بوظائف وفيرة، ويستفيد من تصميم عمود البصريات الإلكترونية المتقدم، مع تقنية نفق شعاع الإلكترون عالي الضغط (SuperTunnel)، وانحراف منخفض، وعدم الغمر عدسة موضوعية، تحقق تصويرًا عالي الدقة بجهد منخفض، ويمكن أيضًا تحليل العينة المغناطيسية. من خلال التنقل البصري، والوظائف الآلية، وواجهة المستخدم التفاعلية بين الإنسان والكمبيوتر المصممة بعناية، وعملية التشغيل والاستخدام المُحسّنة، بغض النظر عما إذا كنت خبيرًا أم لا، يمكنك البدء بسرعة وإكمال أعمال التصوير والتحليل عالية الدقة.
يتعلم أكثرمستقرة ومتعددة الاستخدامات ومرنة وفعالة يعد CIQTEK SEM4000X مجهرًا إلكترونيًا مستقرًا ومتعدد الاستخدامات ومرنًا وفعالًا لمسح الانبعاثات الميدانية (FE-SEM) . إنه يحقق دقة تبلغ 1.9nm@1.0kV، ويتعامل بسهولة مع تحديات التصوير عالي الدقة لأنواع مختلفة من العينات. يمكن ترقيته باستخدام وضع تباطؤ الشعاع الفائق لتعزيز دقة الجهد المنخفض بشكل أكبر. يستخدم المجهر تقنية كاشفات متعددة، مع كاشف إلكترون داخل العمود (UD) قادر على اكتشاف إشارات SE وBSE مع توفير أداء عالي الدقة. يشتمل كاشف الإلكترون المثبت على الحجرة (LD) على وامض كريستالي وأنابيب مضاعفة ضوئية، مما يوفر حساسية وكفاءة أعلى، مما يؤدي إلى الحصول على صور مجسمة بجودة ممتازة. واجهة المستخدم الرسومية سهلة الاستخدام، وتتميز بوظائف التشغيل الآلي مثل السطوع والتباين التلقائي، والتركيز التلقائي، والوصمة التلقائية، والمحاذاة التلقائية، مما يسمح بالتقاط صور فائقة الدقة بسرعة.
يتعلم أكثرعالية الأداء والعالمية خيوط التنغستن SEM المجهر يعد مجهر CIQTEK SEM3200 SEM مجهرًا إلكترونيًا ممتازًا لمسح خيوط التنغستن (SEM) للأغراض العامة مع إمكانات شاملة متميزة. ويضمن هيكل المسدس الإلكتروني الفريد ثنائي الأنود دقة عالية ويحسن نسبة إشارة الصورة إلى الضوضاء عند جهد كهربائي منخفض. علاوة على ذلك، فهو يقدم مجموعة واسعة من الملحقات الاختيارية، مما يجعل SEM3200 أداة تحليلية متعددة الاستخدامات ذات قابلية استهلاك ممتازة.
يتعلم أكثردقة عالية في ظل الإثارة المنخفضة CIQTEK SEM5000Pro هو مجهر إلكتروني لمسح الانبعاثات الميدانية (FE-SEM) من شوتكي متخصص في الدقة العالية حتى في ظل جهد الإثارة المنخفض. إن استخدام تقنية البصريات الإلكترونية المتقدمة "Super-Tunnel" يسهل مسار شعاع خالي من التقاطع مع تصميم عدسة مركبة كهرومغناطيسية كهروستاتيكية. تقلل هذه التطورات من تأثير الشحن المكاني، وتقلل من انحرافات العدسة، وتعزز دقة التصوير عند الجهد المنخفض، وتحقق دقة تبلغ 1.2 نانومتر عند 1 كيلو فولت، مما يسمح بالمراقبة المباشرة للعينات غير الموصلة أو شبه الموصلة، مما يقلل العينة بشكل فعال أضرار الإشعاع.
يتعلم أكثرمجهر إلكتروني ماسح عالي السرعة للتصوير على نطاق واسع للحجم الكبير للعينات CIQTEK HEM6000 مرافق تقنيات مثل المسدس الإلكتروني ذو الشعاع الكبير عالي السطوع، ونظام انحراف شعاع الإلكترون عالي السرعة، وتباطؤ مرحلة العينة عالية الجهد، والمحور البصري الديناميكي، والعدسة الموضوعية الكهرومغناطيسية والكهروستاتيكية المغمورة لتحقيق الحصول على صور عالية السرعة مع ضمان دقة النانو. تم تصميم عملية التشغيل الآلي لتطبيقات مثل سير عمل التصوير عالي الدقة لمساحة كبيرة أكثر كفاءة وذكاءً. يمكن أن تصل سرعة التصوير إلى أكثر من 5 مرات أسرع من المجهر الإلكتروني التقليدي الماسح للانبعاثات الميدانية (FESEM).
يتعلم أكثرالمجهر الإلكتروني الماسح بالانبعاث الميداني التحليلي (FESEM) ذو الشعاع الكبير I CIQTEK SEM4000Pro هو نموذج تحليلي لـ FE-SEM، مزود بمسدس شوتكي الإلكتروني عالي السطوع وطويل العمر. يوفر تصميم العدسة الكهرومغناطيسية ثلاثي المراحل مزايا كبيرة في التطبيقات التحليلية مثل EDS / EDX، وEBSD، وWDS، والمزيد. إنه يأتي قياسيًا مع وضع فراغ منخفض وكاشف إلكترون ثانوي منخفض الفراغ عالي الأداء، بالإضافة إلى كاشف إلكترون منتثر خلفي قابل للسحب، مما يفيد في مراقبة العينات سيئة التوصيل أو غير موصلة.
يتعلم أكثرفائق الدقة عالية الدقة ، المسح المجهري للانبعاثات الإلكترونية (FESEM)ال CIQTEK SEM5000X هو دقة عالية للغاية FESEM مع تصميم العمود البصريات الإلكترون المحسنة ، مما يقلل من الانحرافات الإجمالية بنسبة 30 ٪ ، لتحقيق دقة عالية للغاية قدرها 0.6 نانومتر@15 كيلو فولت و 1.0 نانومتر@1 كيلو فولت إن الدقة والاستقرار العالية تجعلها مفيدة في أبحاث المواد النانوية المتقدمة ، بالإضافة إلى تطوير وتصنيع رقائق IC أشباه الموصلات عالية التقنية.
يتعلم أكثرالجيل القادم من المجهر الإلكتروني لخيوط التنغستن يشتمل CIQTEK SEM3300 المجهر الإلكتروني الماسح (SEM) على تقنيات مثل البصريات الإلكترونية "Super-Tunnel"، وكاشفات الإلكترون الداخلية، والعدسات الموضوعية المركبة الكهروستاتيكية والكهرومغناطيسية. من خلال تطبيق هذه التقنيات في مجهر خيوط التنغستن، يتم تجاوز الحد الأقصى للدقة طويل الأمد لمثل هذا المجهر، مما يمكّن SEM من خيوط التنغستن من أداء مهام تحليل الجهد المنخفض التي لم يكن من الممكن تحقيقها في السابق إلا باستخدام SEM للانبعاث الميداني.
يتعلم أكثرالمجهر الإلكتروني الماسح بالانبعاث الميداني (FE-SEM) مع أعمدة الشعاع الأيوني المركز (FIB) يحتوي CIQTEK DB550 على المجهر الإلكتروني لمسح الشعاع الأيوني المركّز (FIB-SEM) على عمود شعاع أيوني مركّز لتحليل النانو وإعداد العينات. إنه يستخدم تقنية البصريات الإلكترونية "النفق الفائق"، وانحراف منخفض وتصميم موضوعي غير مغناطيسي، وله ميزة "الجهد المنخفض والدقة العالية" لضمان قدراته التحليلية النانوية. تسهل الأعمدة الأيونية مصدر أيون المعدن السائل Ga+ مع حزم أيونية عالية الجودة ومستقرة للغاية لضمان قدرات التصنيع النانوي. DB550 عبارة عن محطة عمل متكاملة لتحليل وتصنيع النانو مع معالج نانو متكامل ونظام حقن الغاز وبرنامج واجهة المستخدم الرسومية سهل الاستخدام.
يتعلم أكثر120 كيلو فولت المجهر الإلكتروني لنقل الانبعاثات الميدانية (TEM) 1. مساحات العمل المقسمة: يقوم المستخدمون بتشغيل TEM في غرفة مقسمة مع الراحة مما يقلل من التداخل البيئي مع TEM. 2. كفاءة تشغيلية عالية: يدمج البرنامج المخصص عمليات مؤتمتة للغاية، مما يسمح بتفاعل TEM فعال مع المراقبة في الوقت الفعلي. 3. تجربة تشغيلية مطورة: مجهزة بمسدس إلكتروني ذو انبعاث ميداني مع نظام آلي للغاية. 4. قابلية توسعة عالية: توجد واجهات كافية مخصصة للمستخدمين للترقية إلى تكوين أعلى، والذي يلبي متطلبات التطبيقات المتنوعة.
يتعلم أكثر